SILICATES - 1

There are hundreds of silicate minerals and they are the major rock building minerals in nearly all rock types,

comprising about 90% of the earth's crust. The basic building block for silicate minerals is the silicate ion $(SiO_4)^{-4}$ which is often referred to as the silicate tetrahedron. Different elements bond to this to form silicate minerals.

I am changing the order presented here away from the alphabetical list to emphasis the structural similarities/differences in how these silicate tetrahedrons are combined. We will save the simplest (Quartz) in which the SiO_4)⁻⁴ anions are only bonded to themselves to form SiO2 for a separate time.

<u>Nesosilicates</u> – isolated tetrahedral (**olivine**, **garnet**, **staurolite**, **topaz**)

<u>Sorosilicates</u> – paired tetrahedral (**epidote**)

<u>Cyclosilicates</u> – Rings of tetrahedron (**beryl, tourmaline**)

Inosilicates – Chained silicates

Single chains - Pyroxenes (i.e. augite), rhodonite

Double chains Amphiboles (i.e. hornblende, tremolite)

Phyllosilicates – Sheet silicates

Micas (biotite, muscovite, lepidolite), kaolinite

<u>Tectosilicates</u> or Framework Silicates – notably feldspars

Plagioclase Series (albite), Potassium series (microcline/amazonite, orthoclase), also sodalite

TABLE 2.2

Major Silicate Structures

GEOMETRY OF LINKAGE OF SiO₄ TETRAHEDRA

Isolated tetrahedra: No sharing of oxygens between tetrahedra; individual tetrahedra linked to each other by bonding to cation between them

nesosilicates

Sorosilicates when paired

Rings of tetrahedra: Joined by shared oxygens in three-, four-, or sixmembered rings

cyclosilicates

Single chains: Each tetrahedron linked to two others by shared oxygens; chains bonded by cations

inosilicates

Double chains: Two parallel chains joined by shared oxygens between every other pair of tetrahedra; the other pairs of tetrahedra bond to cations that lie between the chains inosilicates

Sheets: Each tetrahedron linked to three others by shared oxygens; sheets bonded by cations

phyllosilicates

Frameworks: Each tetrahedron shares all its oxygens with other SiO₄ tetrahedra (in quartz) or AlO₄ tetrahedra tectosilicates

Nesosilicates – Isolated

38. Olivine - (Mg,Fe)₂SiO₄

Color -	
Crystal Habit -	
Crystal System -	
Cleavage -	
Hardness -	
Luster/Streak	/
Use (if any) -	
Other	

in basalt

53. Staurolite - $Fe^{2+}_2Al_9O_6(SiO_4)_4(O,OH)_2$

Color Crystal Habit Crystal System Cleavage Hardness Luster/Streak
Use (if any) Other

56. Topaz – $Al_2SiO_4(F,OH)_2$

Color Crystal Habit Crystal System Cleavage Hardness Luster/Streak
Use (if any) Other

Can be blue

Nesosilicates – Isolated (cont.)

2. Garnet – (Almandine) - $Fe^{2+}_3Al_2Si_3O_{12}$

in schist

Sorosilicates - Paired tetrahedron

20. Epidote - $\{Ca_2\}\{Al_2Fe^{3+}\}[O|OH|SiO_4|Si_2O_7]$

Color Crystal Habit Crystal System Cleavage Hardness Luster/Streak
Use (if any) Other

With feldspar

Cyclosilicates – Rings of tetrahedron

10. Beryl - Be ₃ Al ₂ Sl ₆ O ₁₈	
Color -	
Crystal Habit -	
Crystal System -	
Cleavage -	
Hardness -	
Luster/Streak	/
Use (if any) -	
Other	

Emeralds and aquamarines are both the mineral beryl

57. Tourmaline Group -- complex boron-silicate

Color -	
Crystal Habit -	
Crystal System -	
Cleavage -	
Hardness -	
Luster/Streak	/
Use (if any) -	
Other	

in pegmatite

Inosilicates – Single Chains

Pyroxenes are the most common group of single chain inosilicate with different cations connecting the chains. *Results in Si-O ratio of 1:3*

6. Augite - (Ca)(Mg,Fe)(Si,Al)₂O₆

Color Crystal Habit Crystal System Cleavage Hardness Luster/Streak
Use (if any) Other

Solid Solution:

Mg endmember is diopside Fe end member is hedenbergite

cleavage

49. Rhodonite - MnSiO₃

Color Crystal Habit Crystal System Cleavage Hardness Luster/Streak
Use (if any) Other

Crystal faces

Inosilicates – Double Chains

Amphiboles are the most common group of double chain inosilicate with different cations connecting the chains. Results in Si-O ratio of 4:11

32. Hornblende - (Ca,Na)₂₋₃(Mg,Fe,Al)₅(Al,Si)₈O₂₂(OH,F)₂.

Color -	
Crystal Habit -	
Crystal System -	
Cleavage -	
Hardness -	
Luster/Streak	/
Use (if any) -	
Other	

58. Tremolite - $Ca_2Mg_5Si_8O_{22}(OH)_2$

Color - _______
Crystal Habit - _____
Crystal System - _____
Cleavage - _____
Hardness - _____
Luster/Streak ____/__
Use (if any) - _____
Other

