
Phyllosilicates – Sheets

Phyllosilicates, or sheet silicates, form parallel sheets of silicate tetrahedra with Si_2O_5 or a 2:5 ratio. All phyllosilicate minerals are hydrated with either water or hydroxyl (OH) groups attached. Bonds within the sheets are strong, but bonds between them are quite weak.

37. Muscovite - KAl₂(AlSi₃)O₁₀(OH)₂

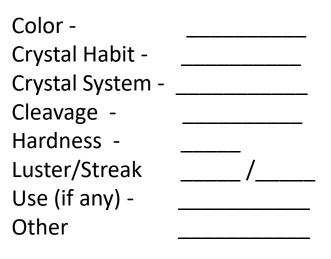
Color - Crystal Habit - Crystal System - Cleavage - Hardness -			
Luster/Streak Use (if any) - Other	/		

Phyllosilicates – Sheets (cont.)

Biotite, muscovite, and lepidolite are sheet silicates from a group of minerals called the MICA group.

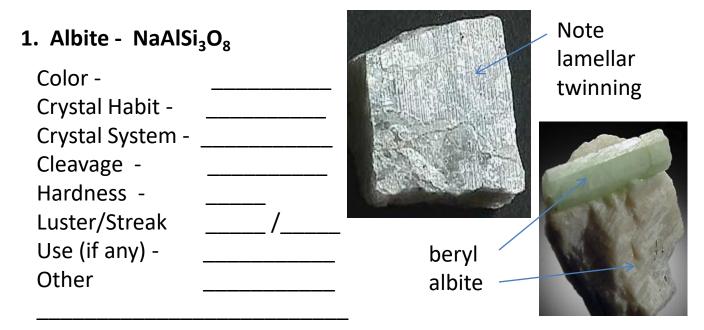
🖊 Li (lithium)

34. Lepidolite - K(Li,Al)₂₋₃(AlSi₃)O₁₀(OH)₂


Color -	
Crystal Habit -	
Crystal System -	
Cleavage -	
Hardness -	
Luster/Streak	/
Use (if any) -	
Other	

Most clay minerals are also phyllosilicates typically with microscopic clay sized crystals (less than 0.02 mm). You are responsible for only one aluminum rich variety.

33. Kaolinite - Al₂Si₂O₅(OH)₄



Framework silicates – Feldspars and more

In a framework silicate, or tektosilicate, each tetrahedron shares all 4 oxygen atoms with its neighbours, forming a 3D-4D structure. Feldspars carry a Si-O ration of 3-8 except where Al substitutes for some Si. **Feldspars** make up as much as 60% of the earth's crust.

There are two main groups of feldspar

- 1) Plagioclase Group (with Na, Ca) --- you have 1 to learn
- 2) Microcline-Orthoclase Group (with K) -- you have 2 to learn

3. Microcline - KAlSi₃O₈ variety - Amazonite

Color -	
Crystal Habit -	
Crystal System -	
Cleavage -	
Hardness -	
Luster/Streak	/
Use (if any) -	
Other	

Framework silicates – (cont.)

3. Orthoclase - KAlSi₃O₈

Color -	
Crystal Habit -	
Crystal System -	
Cleavage -	
Hardness -	
Luster/Streak	/
Use (if any) -	
Other	

Pink color in granite is due to orthoclase

51. Sodalite - Na₈(Al₆Si₆O₂₄)Cl₂

Color -	
Crystal Habit -	
Crystal System -	
Cleavage -	
Hardness -	
Luster/Streak	/
Use (if any) -	
Other	

Framework silicates - QUARTZ

Quartz is the second most abundant mineral in the erath's continental crust, after feldspar. Its crystal structure is a continuous framework of SiO_4 (silicon tetratehdra) with each oxygen being shared between two tetrahedra, giving an overall chemical formula of SiO_2 .

There are many different varieties of quartz, several of which are semi-precious gems. Since antiquity, varieties of quartz have been the most commonly used minerals in the making of jewelry.

	General	A Martin		
Category	oxide mineral ^{[1][2]}	E-DA 53		
ormula repeating unit)	SiO ₂	REAM		
Strunz classification	4.DA.05 (Oxides)	a state		
Dana classification	75.01.03.01 (tectosilicates)			
Crystal system	α-quartz: trigonal		Minas Lemurians	Madagascar Quartu
	β-quartz: hexagonal	Brazil Quartz	AA	A
Color	Colorless through various colors to black	AA	ALA	IF
Crystal habit	6-sided prism ending in 6- sided pyramid (typical), drusy, fine-grained to microcrystalline, massive			
Twinning	Common Dauphine law, Brazil law and Japan law	Chinese Quartz	N.	5
Cleavage	{0110} Indistinct			
Fracture	Conchoidal		de la	22
Tenacity	Brittle	(A. A.		
Mohs scale hardness	7 – lower in impure varieties (defining mineral)			
Luster	Vitreous – waxy to dull when massive			
Streak	White		Sanda - The B	1 1 2

Forms of Silica – SiO₂

Quartz- SiO_2 common crystalline form with all the properties of a mineral. Pure quartz is colorless and transparent. Inclusions and impurities can impart color.

Clear quartz

Rose quartz

Citrine

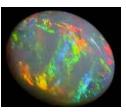
Amethyst

milky quartz

Chalcedony-general name for cryptocrystalline quartz

Agate/Onyx – variety of chalcedony with curved or angular banding, onyx has black and white banding

Japser- red/orange variety of chalcedony where color is due to iron



Opal – hydrated (contains water) amorphous form of silica, the water in the structure causes light to be refracted in a multitude of colors. Opal is the gemstone of Australia

